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Abstract

The interaction between entorhinal cortex (EC), amygdala, and hippocampal and cortical

areas in vertebrate brains is studied using the dynamical K model approach. Special emphasis

is given to the role of EC in decision making under the influence of sensory, orientation, and

motivational clues. We introduce a simplified KIV model with positive and negative

reinforcement learning in the hippocampus and the cortex. The developed model is

implemented in a 2D computational environment for multi-sensory control of the movement

of a simulated animal. Our results support the interpretation of recent EEG measurements

with instantaneous macroscopic phase transitions.
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1. Introduction

Based on Freeman’s decades-long studies into the dynamics of neural populations,
a hierarchy of K-models has been developed, including KO, KI, KII, and KIII sets
[3]. K-sets are strongly motivated by neurophysiological principles, and they are
expressed as a lumped-parameter set of 2nd order ordinary differential equations. K
sets reproduce major properties of measured EEG and unit (pulse) signals [2,5], and
they have been used successfully for pattern recognition and classification. K models
compare very well with other classification methods, especially in the case of difficult
classification problems with strongly nonlinear class boundaries and with relatively
few learning examples.

The KIV model is the highest level in the hierarchy of K sets [6,7]. KIV has the
function of action selection, in addition to classification and pattern recognition
represented by single KIII units. KIV consists of several major components,
including cortex (COR), hippocampal formation (HF), the midline forebrain (MF)
with the basal ganglia, entorhinal cortex (EC) and the amygdala (AMY). All
components are involved with learning and memory. Previous studies aimed at
analyzing the role of the cortico-HF in learning and navigation [7,10]. The present
work investigates the EC and its interaction with AMY and other major parts of the
KIV model. Biological evidence indicates that the AMY, together with the adjacent
cortex, is intimately involved in decision-making and emotion processing for goal-
directed behavior [1,8,9]. Decision-making is made based on the motivational value
that is expected after execution of the selected behavioral action sequences [11].

Recent EEG experiments indicate the effective formation of a global state
variable, which is manifested in the emergence of a wave form that is a shared
component of the variance of the carrier wave inputs from various cortical areas.
Fig. 1. Instantaneous phase differences of EEG of an array of 64 electrodes. Extended periods with small

phase differences are interrupted by brief periods with increased phase differences [4].
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The emergence of this common component is the indication of the onset access to a
macroscopic attractor by phase transitions. An example of the observations is given
in Fig. 1, where the instantaneous phase differences are plotted against temporal and
spatial coordinates. The spatial coordinate is represented by the linear array of 64
EEG electrodes extending across the hemisphere [4]. Synchronized jumps in the
instantaneous phase differences are clearly visible for large part of the hemisphere at
alpha rates. This work aims at developing the KIV model of the brain, which can be
used for the interpretation of EEG observations.

The present work starts with the description of the KII model of the EC and its
relation to the cortical and the hippocampal KIII units. Reinforcement learning with
positive and negative reinforcement signals is used in a 2D environment. Spatio-
temporal oscillations in KIV have been used for the interpretation of state
transitions identified in recent EEG measurements.
2. The role of entorhinal cortex and amygdala in the formation of the global KIV state

In this section, we employ a simplified version of the KIV model. We consider the
cortex and the HF as KIII units comprising KIV, without incorporating the Septum
and the Basal Ganglia. The cortex and the hippocampus are connected through the
coordinating activity of the EC/AMY to the brain stem and the rest of the limbic
system. Fig. 2 illustrates the connections between components of the simplified KIV.
The connections are shown as generally bidirectional, but they are not reciprocal.

The output of a node in a KII set is directed to nodes in another KII set, but it
does not receive output from the same nodes but other nodes in the same KII set.
Moreover, these connections are sparse; i.e., a given node in the EC is connected to a
subset of the nodes in CA1 and PC. The sparseness can be expressed as a percentage
of total connections for each node. In brains its value is estimated to be a few %. The
Fig. 2. Simplified KIV model illustrating the relationship between components of the HF, the sensory

cortex and AMY. Abbreviations: DG, dentate gyrus; CA1–CA3, Cornu Ammonis (hippocampal

sections); PG, periglomerular; OB, olfactory bulb; AON, anterior olfactory nucleus; PC, prepyriform

cortex; EC, entorhinal cortex; AMY, amygdala.
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KIV level of function is established by the interactions among the CA1, PC, EC, and
AMY, which are modeled as KII sets. The AMY receives inputs from other KII sets
(not from the environment), and it is privileged with full (100%) internal connection
density. For the connection density of HF and PC KII to EC, the sparseness
parameter 20% is used. The formation of a global KIV state variable is manifested in
the emergence of a shared variance of the wave inputs from the component KII sets.
This common wave form constitutes the global input to EC. The output of EC,
through the AMY, is the source of goal-oriented control of the motor system.

Chaotic behavior in KIII sets is the result of the competition between 3 KII
oscillators. In healthy brains, none of the KII components gain dominance above the
others permanently. In KIV, the competing components are KIII sets, which
maintain relative autonomy. At the same time, they do share common information
to generate the KIV level of dynamics. The KIV dynamics is the access to the global
macroscopic state. It is not the result of capture by any of the KIII or KII sets, the
same way as the KIII level chaos is not the result of capture of the dynamics by any
of the KII sets. In the next section we investigate the indications of the emergence of
global collective state in KIV simulations.
3. Computer simulation experiment with KIV

In computer simulation of the KIV model we use a 2D simulated Martian
environment [10]. In this environment, the robot moves along a grid. At any given
grid point, the next move of the robot is chosen from one of the four directions,
unless obstacles prevent movement to certain directions. The robot uses two sensory
systems; namely global landmark detector and local infrared sensor (IR) with a finite
sensitivity range of two grid points. The landmark detectors measure the distance
and direction of three given landmarks, while the IR measures the distance between
the location of the robot and any existing obstacles in eight directions (E, NE, N,
NW, W, SW, S, SE).

The operation of the KIV model has three major phases: learning, labeling and
control [7]. At the learning phase, the robot explores the environment using a
predefined strategy. In the presence of positive reinforcement signal, learning occurs
in the hippocampal KIII. We apply positive reinforcement in the hippocampus when
the robot correctly moves towards the specified goal location. On the other hand,
cortical KIII learning is based on negative reinforcement signal. Reinforcement is
activated when the robot approaches an obstacle or if it gets trapped. Reinforcement
learning is implemented using Hebbian correlation rule in CA1 and PC, respectively.
During the labeling phase no learning takes place. Instead, the robot collects
reference activation values from the AMY. Four types of reference activation
patterns are formed, corresponding to moving forward or backward, and turning
right or left. At the control phase, these reference patterns are used to make decision
on the direction of the next step.

In the KIV model we have fixed the gains between the EC, CA1, and PC at the
level of 0.0001. The coefficient of the Hebbian learning in the KIII sets is 0.85. The
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Fig. 3. Simulated path of the trained robot from the start (S) to the goal (G) using KIV model with multi-

sensory inputs and AMY.
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size of AMY is 80 nodes. We have conducted a series of experiments with the KIV
set. An example of the observed trajectory of the simulated robot is shown in Fig. 3.
It took the simulated robot 153 steps to get from the start to the goal using the KIV
model. It is clear that the performance of the system is suboptimal. By further tuning
the behavior of the KIV, the performance can be significantly improved. However,
that has not been the main focus of the present work. Rather, we study the dynamics
of the EC and its links to various KIII units.
4. Spatio-temporal dynamics of simulated EC with amygdala

We have evaluated the simulated KIV signals using the method proposed in [4].
The instantaneous phase differences of 64 EC channels in the KIV model are
illustrated in Fig. 4 over a period of 500 time steps with sampling time of 1ms. The
activations of each EC channels have been filtered in the 15–75Hz band. One can
observe the sequence of quiet periods with smaller phase differences, interrupted by
transitional periods with high variation of the phase differences. The observed effects
are interpreted as indications of macroscopic phase transitions, as identified in actual
EEG measurements [4].

Further details of the KIV simulations are depicted in Fig. 5, where the mean
instantaneous phase differences are shown as the function of time. Extended periods
with relatively low phase values are interrupted by short intervals with significantly
increased phase differences. The observed period of 100–150ms between phase
jumps is in accordance with EEG experiments. Future studies will be conducted to
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Fig. 4. Instantaneous phase differences of the simulated EC using the KIV model.

Fig. 5. Mean phase differences in the simulated EC as the function of time.
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show how these results can be used for the interpretation of EEG behavior as global
phase transitions in cognitive processing.
5. Conclusions

The main goal of the present study has been to investigate the role of the EC in
coordinating the dynamics of the simplified KIV brain model. The developed KIV
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model has been used in the computer simulation of multi-sensory navigation in a
simple 2D Martian-like environment. The KIV model exhibited global phase
transitions in the EC during goal-oriented navigation in the simulated environment.
These results are used for the interpretation of actual EEG measurements. Future
studies will be conducted to clarify the role of various parameters, such as sparseness
and gain values among the KII components, and the optimum choice of learning
parameters within the KIII units.
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